We started in 2016 with S7 and S3 µC and developed our own boards, since that we are waiting for an easy to implement and maintainable bootloader/flashloader.
Every time in the last years when I've visited the Renesas booth on embedded world, they guys told me that an useable bootloader framework will be offered in the future.
Then finally when Renesas provides a bootloader/flashloader, Renesas - as far as I know - stopped the support with SSP 1.3.0., why?
May be I'm the only developer, who is confused which bootloader to choose now, ensuring support by Renesas also in future SSP versions.
So I'm not misunderstood, I have to say that I really appreciate SSP and also the support here in RenesasRulz, but regarding the subject bootloader I can't see a really clear and future-proof concept compared to other SSP modules.
E.g. ST provides CAN/Ethernet/USB/UART bootloader versions for their STM32 Cortex M series, why it is not possible to provide something similar for the Synergy family?
Background of this post is, that we actually have to plan a project for huge number of devices, installed all over the country in the next years, but being now unsure which solution we should choose.
What other piece of advice can you give us than to implement the bootloader itself?
Thank you very much and best regards
Ralph
Hi,
Which S3 device and board are you using? Which SSP version?
Attached is a tweaked pack file. In this version the bootloader disables stack monitoring before jumping to the main application. This is required for SSP 1.7.0. PLEASE RENAME EXTENSION FROM ZIP TO PACK
Also attached is a modified Python srec converter file which was provided by user erik. PLEASE RENAME EXTENSION FROM TXT TO PY
I don't know any other document specific to the nano version of the flashloader.
Regards,
Ian.
#!/usr/bin/env python ''' /******************************************************************************* * DISCLAIMER * This software is supplied by Renesas Electronics Corporation and is only * intended for use with Renesas products. No other uses are authorized. This * software is owned by Renesas Electronics Corporation and is protected under * all applicable laws, including copyright laws. * THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES REGARDING * THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT * LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE * AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY DISCLAIMED. * TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS * ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE * FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR * ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS AFFILIATES HAVE * BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. * Renesas reserves the right, without notice, to make changes to this software * and to discontinue the availability of this software. By using this software, * you agree to the additional terms and conditions found by accessing the * following link: * http://www.renesas.com/disclaimer * * Copyright (C) 2013 Renesas Electronics Corporation. All rights reserved. *******************************************************************************/ /**************************************************************************** * File Name : FL_MOT_Converter.py * Description : This application takes an S-Record file and converts it into * a Load Image to be used with the Renesas FlashLoader project. * The code is setup so that if you are just wanting to change * the size of entries in a structure then the only thing * you need to change is the number associated with the * entry in the dictionaries below (FL_LI_FORMAT and * FL_BH_FORMAT). You can edit the image header valid_mask * value using the -m option. You can edit the block header * valid_mask value by changing FL_BH_VALID_MASK. If you * want to edit more than the size of entries then you will * need to dig in deeper. * * Notes : For seeing the format of a S-Record file I recommend looking * here : http://www.amelek.gda.pl/avr/uisp/srecord.htm ******************************************************************************/ /****************************************************************************** * History : MM.DD.YYYY Version Information * : 03.18.2010 Ver. 1.00 First Release - BCH * : 09.20.2010 Ver. 2.00 Cleaned up code, made easier to * modify - BCH * : 03.01.2012 Ver. 3.00 Added '-m' option to set the app's * valid mask value. The default value is * 0xAA. If the read value does not match * the expected value then an error * message is output. * : 08.08.2016 Ver. 4.00 Added -r option to set the flash size * that the ImageHeader->checksum_fw_image will use * to calculate the CRC. It is specified in * bytes. * Added the ImageBlock valid_mask, * block_identifier, flash_address, data_size * and next_block_address to data_checksum * : 09.27.2016 Ver. 5.00 Updates for Synergy, diverging... * ******************************************************************************/ ''' #Used for getting input arguments and exiting import sys #Used to split extension off of the input filename (that's it) import os #Used for string operations import string #binascii is used for converting from ASCII to binary import binascii #crcmod is used for doing the CRC16 import crcmod #Used for unpacking FL_CurAppHeader from S-Record file (like C style struct) from struct import * #This allows us to define the 'struct' that we use later from collections import namedtuple #This is the overall class that processes an S-Record file class FL_MOT_Converter: #Number of bytes used for checksum in S-Record file CHECKSUM_BYTES = 1 #If the user wants to change the size of the fields in the Load Image Header or Data Block #Header then they can do this below. There is a Python dictionary for each header below #with the name of the structure entry and the number of bytes associated with that entry. #If for instance you wanted to change the 'image_id' field to be 2 bytes you would change #the FL_LI_FORMAT definition below to 'image_id':2 #An array for holding Load Image size format #size_bch Size of the BCH file #size_raw Can span multiple memory instances. Should be the same size as the sum of memory instance slots used. #sf_firmware_image_file_header_t FL_LI_FORMAT = {'valid_mask':1, 'version_number':1, 'image_identifier':2, 'num_blocks':4, 'size_bch':4, 'size_raw':4, 'maximum_block_size':4, 'checksum_bch_file':4, 'checksum_fw_image':4, 'application_start_address':4, 'num_memory_instances':4, 'p_app_memory_instance':4, 'first_block_address':4, 'successfully_stored':4, 'checksum_bch_file_header':4 } #Number of bytes in Load File Header FL_LI_STRUCT_SIZE = sum([i for i in FL_LI_FORMAT.values()]) #Number of bytes to checksum_fw_image in header FL_LI_FW_CHKSM_OFFSET = FL_LI_FORMAT['valid_mask'] + FL_LI_FORMAT['version_number'] + FL_LI_FORMAT['image_identifier'] + FL_LI_FORMAT['num_blocks'] + FL_LI_FORMAT['size_bch'] + FL_LI_FORMAT['size_raw'] + FL_LI_FORMAT['maximum_block_size'] + FL_LI_FORMAT['checksum_bch_file'] #An array for holding Block Header size format #sf_firmware_image_bch_block_header_t FL_BH_FORMAT = {'valid_mask':1, 'block_identifier':2, 'flash_address':4, 'data_size':4, 'data_checksum':4, 'next_block_address':4, 'checksum_bch_block_header':4} #Number of bytes in Data Block Header FL_BH_STRUCT_SIZE = sum([i for i in FL_BH_FORMAT.values()]) #Other defines for Load Image Headers and Data Block Headers FL_BH_VALID_MASK = "AF" #Holds current sequence number for record block_identifier = 0 #Initializer function for this class. It takes in parameters #and initializes class variables. It also configures the CRC #calculator that will be used. def __init__(self, input_file, output_file, maximum_block_size, fill_space, header_loc, in_valid_mask, slot_size, application_start_address): self.mot_filename = input_file self.out_filename = output_file self.maximum_block_size = maximum_block_size self.max_data_size = maximum_block_size - self.FL_BH_STRUCT_SIZE self.max_fill_space = fill_space self.header_location = header_loc self.input_valid_mask = in_valid_mask self.header_bytes_left = self.FL_LI_STRUCT_SIZE self.slot_size = slot_size self.fileheader = "" self.filesize = 0 self.size_raw = 0 self.num_blocks = 0 #Used for CRC - CCITT - x^16 + x^12 + x^5 + 1 self.g16 = 0x11021 self.crc_init = 0xFFFF #CRC used for the entire file - Image CRC self.file_crc = crcmod.Crc(self.g16, self.crc_init, 0) #CRC used for each file header self.file_header_crc = crcmod.Crc(self.g16, self.crc_init, 0) #CRC used for selected flash memory range self.checksum_fw_image = 0 #Address of image in MCU flash, runnable location self.application_start_address = application_start_address self.CRCTable=SRecordCRC(application_start_address, slot_size, header_loc) #If an error is found in the S-Record file then this function is called def found_error(self): print "Each line in a S-Record should start with a 'S'" print "The file you input had a line that started without" print "an 'S'. Please check to make sure you have a valid" print "S-Record file." sys.exit() #This function packages up a Data Block and writes it to the output file def write_block(self,output_file, current_buffer, msb_start_address): #Print valid mask 0xAF write_str = binascii.unhexlify(self.switch_endian(self.FL_BH_VALID_MASK)) #Write Sequence ID msb_sequence_num = ("%0" + str(self.FL_BH_FORMAT['block_identifier']*2) + "x") % self.block_identifier #Switch to LSB lsb_sequence_num = self.switch_endian(msb_sequence_num) #Write 'block_identifier' to file write_str += binascii.unhexlify(lsb_sequence_num) #increment sequence number self.block_identifier += 1 #Print start address for block #Pad address if not correct number of chars msb_start_address = ("0"*((self.FL_BH_FORMAT['flash_address']*2) - len(msb_start_address))) + msb_start_address #Switch to LSB lsb_flash_address = self.switch_endian(msb_start_address) #Write 'flash_address' field to file write_str += binascii.unhexlify(lsb_flash_address) #Print size of data block in bytes msb_size_string = ("%0" + str(self.FL_BH_FORMAT['data_size']*2) + "x") % (len(current_buffer)/2) #Switch to LSB lsb_size_string = self.switch_endian(msb_size_string) #Write 'data_size' field to file write_str += binascii.unhexlify(lsb_size_string) #Print CRC of data - Using CCITT - x^16 + x^12 + x^5 + 1 block_data_crc = crcmod.Crc(self.g16, self.crc_init, 0) block_data_crc.update(binascii.unhexlify(current_buffer)) write_str += (binascii.unhexlify(self.switch_endian(("%0" + str(self.FL_BH_FORMAT['data_checksum']*2) + "x") % block_data_crc.crcValue))) block_crc = crcmod.Crc(self.g16, self.crc_init, 0) block_crc.update(write_str) block_crc_save = (binascii.unhexlify(self.switch_endian(("%0" + str(self.FL_BH_FORMAT['checksum_bch_block_header']*2) + "x") % block_crc.crcValue))) #Print empty record for MCU to fill in for 'next block header address' #The 'join' command below will join strings of FF together to make FFFF... #for however many bytes I need write_str += binascii.unhexlify(''.join(self.FL_BH_FORMAT['next_block_address']*['FF'])) #Write 'checksum_bch_block_header' to file write_str += block_crc_save #Print data write_str += binascii.unhexlify(current_buffer) #Update size_raw, this is also updated below for gaps between addresses self.size_raw += (len(current_buffer)/2) if(self.size_raw > self.slot_size): raise Exception("Slot size is smaller than the firmware image size") #Write new block to file output_file.write(write_str) #Update file CRC self.file_crc.update(write_str) #Update filesize self.filesize += (len(current_buffer)/2) + self.FL_BH_STRUCT_SIZE #Update num_blocks self.num_blocks += 1 #This function handles switching MSB to LSB and vice versa def switch_endian(self,temp): #Check to see if argument is 1 byte long, if so send it back if(len(temp) == 1): return temp #Check to make sure length is even if(len(temp)%2 == 1): print 'Switching endian failed. Input should always have even number length' sys.exit() #Switch endian temp_length = len(temp) #Do first iteration temp_length = temp_length - 2 switched = temp[temp_length:] while(temp_length > 0): #Append next byte switched = switched + temp[temp_length-2:temp_length] temp_length = temp_length - 2 return switched #This function runs crc over "erased flash" (0xFF) def run_erased_flash(self, range_for_flash_gap_crc): while(range_for_flash_gap_crc > 0): range_for_flash_gap_crc -= 1 #Update size_raw, this is also updated in write_block self.size_raw += 1 #This function is called to process the S-Record file def Process(self): #Open input file try: with open(self.mot_filename, "r") as mot_file: mot_lines=mot_file.readlines() except: print 'Error opening input file ' , self.mot_filename raise #Open a new file for output try: out_file = open(self.out_filename, "w+b") except: print 'Error opening output file ' , self.out_filename raise #Write as much of the load file header as we can. We'll #come back and write the rest at the end. #Print holders for Valid Mask, Image ID, Version #, Size of Load Image #Using .join() to make variable length string of all F's out_file.write(binascii.unhexlify(''.join((self.FL_LI_FORMAT['valid_mask'] + self.FL_LI_FORMAT['version_number'] + self.FL_LI_FORMAT['image_identifier'] + self.FL_LI_FORMAT['num_blocks'] + self.FL_LI_FORMAT['size_bch'] + self.FL_LI_FORMAT['size_raw']) *['FF']))) #Print max block header size msb_max_block_size = ("%0" + str(self.FL_LI_FORMAT['maximum_block_size']*2) + "x") % self.maximum_block_size #Switch to LSB lsb_max_block_size = self.switch_endian(msb_max_block_size) #Write out 'maximum_block_size' out_file.write(binascii.unhexlify(lsb_max_block_size)) #Print holders for Image CRC, Raw CRC, Address in Ext Memory, #and Successfully Stored. Using .join() again out_file.write(binascii.unhexlify(''.join((self.FL_LI_FORMAT['checksum_bch_file'] + self.FL_LI_FORMAT['checksum_fw_image'] + self.FL_LI_FORMAT['application_start_address'] + self.FL_LI_FORMAT['num_memory_instances'] + self.FL_LI_FORMAT['p_app_memory_instance'] + self.FL_LI_FORMAT['first_block_address'] + self.FL_LI_FORMAT['successfully_stored'] + self.FL_LI_FORMAT['checksum_bch_file_header']) *['FF']))) #Process each line in the file prev_address = 0 address = 0 num_bytes = 0 start_address = "" cur_buffer = "" prev_num_bytes = 0 cur_num_bytes = 0 for line in mot_lines: # Modified how we detect RAM records isRamRecord = False if line.startswith('S3') == True: potentialRamAddress = int(line[4:12],16) if ((potentialRamAddress >= 0x1FFE0000) and (potentialRamAddress <= 0x2007FFFF)): isRamRecord = True if isRamRecord == True: print("Stripping out RAM Records: ", line) else: self.CRCTable.ProcessRecord(line) patched_lines=self.CRCTable.GetPatchedRecords() with open(self.mot_filename,'w') as mot_overwritten: mot_overwritten.writelines(patched_lines) #almost identical but we're getting a CRC patched line somewhere in there for line in patched_lines: #Test to see if each line starts with 'S' if line.startswith('S') == False: self.found_error() #Get address for this line #S3 means 4-byte address if line.startswith('S3') == True: address_start_byte = 4 data_start_byte = 12 address_size_bytes = 4 #S2 means 3-byte address elif line.startswith('S2') == True: address_start_byte = 4 data_start_byte = 10 address_size_bytes = 3 #S1 means 2-byte address elif line.startswith('S1') == True: address_start_byte = 4 data_start_byte = 8 address_size_bytes = 2 #You can add more elif statements here for handling other #S-Records. There are S0-S9. I only handle the ones I need else: continue #Read the address for this S-Record line address = int(line[address_start_byte:data_start_byte],16) #Get number of bytes on the line cur_num_bytes = int(line[2:address_start_byte],16) #Get number of bytes between this record and last (0 means they are sequential) bytes_between = address - prev_address - prev_num_bytes + (address_size_bytes + self.CHECKSUM_BYTES) #Get file header if this is the place for it if address <= self.header_location and self.header_location < (address + cur_num_bytes - address_size_bytes - self.CHECKSUM_BYTES): #All or part of the file header is in this buffer #How far into buffer does the file header start offset_in_buffer = self.header_location - address #How many bytes are left after the start of the file load header in buffer buffer_bytes_left = (address + cur_num_bytes - address_size_bytes - self.CHECKSUM_BYTES) - self.header_location if buffer_bytes_left >= self.header_bytes_left: #We can get the whole (or rest) of the file header now self.fileheader += line[data_start_byte+(offset_in_buffer*2):data_start_byte+(offset_in_buffer*2)+(self.header_bytes_left*2)] self.header_bytes_left = 0 else: #We can only get part of the file header this time self.fileheader += line[data_start_byte+(offset_in_buffer*2):data_start_byte+(offset_in_buffer*2)+(buffer_bytes_left*2)] self.header_bytes_left -= buffer_bytes_left self.header_location += buffer_bytes_left #Check if first line of file if len(cur_buffer) == 0: cur_buffer += line[data_start_byte:len(line)-((self.CHECKSUM_BYTES*2)+1)] #Get start address start_address = line[address_start_byte:data_start_byte] #Check to see if address is sequential or within max_fill_space elif bytes_between <= self.max_fill_space and (len(cur_buffer)/2) + bytes_between < self.max_data_size: #Add 0xFF's in empty space to join S-Records that are not sequential if(bytes_between > 0): while(bytes_between > 0): cur_buffer += 'FF' bytes_between -= 1 #Check to see if adding this record will go over the max Data size, if so split it if((len(cur_buffer)/2) + cur_num_bytes - address_size_bytes - self.CHECKSUM_BYTES > self.max_data_size): num_bytes_left = self.max_data_size - (len(cur_buffer)/2) #Multiple num_bytes_left by 2 since data is in ASCII hex cur_buffer += line[data_start_byte:data_start_byte + (2*num_bytes_left)] #Output previous record self.write_block(out_file, cur_buffer, start_address) #Start new record header cur_buffer = line[data_start_byte + (2*num_bytes_left):len(line)-((self.CHECKSUM_BYTES*2)+1)] #Get new start address if(address_size_bytes == 4): start_address = "%08x" % (address + num_bytes_left) elif(address_size_bytes == 3): start_address = "%06x" % (address + num_bytes_left) else: start_address = "%04x" % (address + num_bytes_left) else: cur_buffer += line[data_start_byte:len(line)-((self.CHECKSUM_BYTES*2)+1)] #If not sequential, and not first line, then this is new block else: #Useful debug printout #print('new record ' + hex(address) + ' difference is ' + str(address - prev_address - prev_num_bytes + (address_size_bytes + self.CHECKSUM_BYTES))) #Output previous record self.write_block(out_file, cur_buffer, start_address) #TODO Need to skip areas of flash that do not exist (between code flash, data flash, qspi...) #TODO Need to find the slot addresses and sizes using p_app_memory_instance in the file header. #Sum over the gap between the previous address and the current address. range_for_gap_crc = address - (prev_address + (prev_num_bytes - (address_size_bytes + self.CHECKSUM_BYTES))) self.run_erased_flash(range_for_gap_crc) #Start new record header cur_buffer = line[data_start_byte:len(line)-((self.CHECKSUM_BYTES*2)+1)] #Get new start address start_address = line[address_start_byte:data_start_byte] #Update for next line prev_num_bytes = cur_num_bytes #Update previous address so you can check if next S-Record is sequential prev_address = address #Output last buffer, if there is one if(len(cur_buffer) > 0): #output previous record self.write_block(out_file, cur_buffer, start_address) #Sum over the rest of the flash slot. range_for_gap_crc = self.slot_size - self.size_raw self.run_erased_flash(range_for_gap_crc) #Check to make sure LoadFileHeader was found if self.header_bytes_left > 0: print 'Error - The Load Image Header was not found for this application.' print 'Look at structure of Load Image Header for what is supposed to be found' raise Exception("Error - The Load Image Header was not found for this application.") else: #Process file header and write to file self.ProcessHeader(out_file) #Close output file out_file.close() print "\nS-Record file converted successfully." print "Output file is " + self.out_filename print "Size of entire Load Image is " + str(self.filesize) + " bytes" print self.mot_filename + ' checksum_fw_image: ' + (("%0" + str(self.FL_LI_FORMAT['checksum_fw_image']*2) + "x") % self.checksum_fw_image) #Not all of the information for the Load Image Header is known when we first start processing #the file. This function is called after the file is processed so that we know all the #information we need (image_identifier, version_number, file_crc) def ProcessHeader(self, output_file): #This is used to 'define a structure' so that we can take the data and split it #into its individual parts easily. This would be similar to having a structure pointer #in C and pointing it to a block of memory that you knew represented a structure. The #entries in this string need to be in the same exact order as you have in the #C structure. For instance 'valid_mask' is the first entry and 'image_identifier' is the 2nd. FL_Struct_LI = 'valid_mask version_number image_identifier num_blocks size_bch size_raw maximum_block_size checksum_bch_file checksum_fw_image application_start_address num_memory_instances p_app_memory_instance first_block_address successfully_stored checksum_bch_file_header' #This builds the format string needed. B = byte, H = 2 bytes, L = 4 bytes per entry. #Output will produce something like this '<BBBLLHHLL' FL_LI_FORMAT_STRING = "<" for entry in FL_Struct_LI.split(' '): if self.FL_LI_FORMAT[entry] == 1: FL_LI_FORMAT_STRING += 'B' elif self.FL_LI_FORMAT[entry] == 2: FL_LI_FORMAT_STRING += 'H' elif self.FL_LI_FORMAT[entry] == 4: FL_LI_FORMAT_STRING += 'L' else: print 'Error - This code only supports even sized structure objects for Load Image Headers and Data Block Headers'; raise Exception("Error - This code only supports even sized structure objects for Load Image Headers and Data Block Headers") #Use string to define entries in structure LoadImageHeader = namedtuple('LoadImageHeader', FL_Struct_LI) #Use structure to get values from the data 'blob' my_header = LoadImageHeader._make(unpack(FL_LI_FORMAT_STRING,binascii.unhexlify(self.fileheader))) # print ['%s: %x'%(x,vars(my_header)[x]) for x in vars(my_header)] #Check Valid Mask to make sure this is actually a valid header if my_header.valid_mask != self.input_valid_mask: print 'Error - Valid mask in Application Header did not match the value it was supposed to be.' print 'Expected Value = ' + hex(self.input_valid_mask) + " Actual Value = " + hex(my_header.valid_mask) raise Exception('Expected Value = ' + hex(self.input_valid_mask) + " Actual Value = " + hex(my_header.valid_mask)) #Write valid mask file_header_string = (binascii.unhexlify(self.switch_endian(("%0" + str(self.FL_LI_FORMAT['valid_mask']*2) + "x") % my_header.valid_mask))) #Write Version Number file_header_string += (binascii.unhexlify(self.switch_endian(("%0" + str(self.FL_LI_FORMAT['version_number']*2) + "x") % my_header.version_number))) #Write Image ID file_header_string += (binascii.unhexlify(self.switch_endian(("%0" + str(self.FL_LI_FORMAT['image_identifier']*2) + "x") % my_header.image_identifier))) #Number of blocks file_header_string += (binascii.unhexlify(self.switch_endian(("%0" + str(self.FL_LI_FORMAT['num_blocks']*2) + "x") % self.num_blocks))) #We need to switch the endian on these next entries because they are MSB on the PC #Add LoadImageHeader size to filesize self.filesize += self.FL_LI_STRUCT_SIZE file_header_string += (binascii.unhexlify(self.switch_endian(("%0" + str(self.FL_LI_FORMAT['size_bch']*2) + "x") % self.filesize))) #We need to switch the endian on these next entries because they are MSB on the PC #Add size_raw file_header_string += (binascii.unhexlify(self.switch_endian(("%0" + str(self.FL_LI_FORMAT['size_raw']*2) + "x") % self.size_raw))) #Write Max Block Size file_header_string += (binascii.unhexlify(self.switch_endian(("%0" + str(self.FL_LI_FORMAT['maximum_block_size']*2) + "x") % self.maximum_block_size))) #Write Image CRC file_header_string += (binascii.unhexlify(self.switch_endian(("%0" + str(self.FL_LI_FORMAT['checksum_bch_file']*2) + "x") % self.file_crc.crcValue))) #Write the raw CRC calculated by the compiler if the default data size has not been modified. self.checksum_fw_image = my_header.checksum_fw_image file_header_string += (binascii.unhexlify(self.switch_endian(("%0" + str(self.FL_LI_FORMAT['checksum_fw_image']*2) + "x") % my_header.checksum_fw_image))) #Write application_start_address file_header_string += (binascii.unhexlify(self.switch_endian(("%0" + str(self.FL_LI_FORMAT['application_start_address']*2) + "x") % self.application_start_address))) #Write num_memory_instances, not used for a BCH file, set to NULL file_header_string += (binascii.unhexlify(''.join(self.FL_LI_FORMAT['num_memory_instances']*['00']))) #Write p_app_memory_instance, not used for a BCH file, set to NULL file_header_string += (binascii.unhexlify(''.join(self.FL_LI_FORMAT['p_app_memory_instance']*['00']))) #Calculate CCIT checksum, excluding first_block_address, successfully_stored, checksum_bch_file_header self.file_header_crc.update(file_header_string) file_header_crc = (binascii.unhexlify(self.switch_endian(("%0" + str(self.FL_LI_FORMAT['checksum_bch_file_header']*2) + "x") % self.file_header_crc.crcValue))) #Write first_block_address 0xFFFFFFFF file_header_string += (binascii.unhexlify(''.join(self.FL_LI_FORMAT['first_block_address']*['FF']))) #Write successfully_stored 0xFFFFFFFF file_header_string += (binascii.unhexlify(''.join(self.FL_LI_FORMAT['successfully_stored']*['FF']))) #Write File Header CRC, checksum_bch_file_header file_header_string += file_header_crc #Go back and write the Load File Header output_file.seek(0) output_file.write(file_header_string) class SRecordCRC: CRC_HEADER_OFFSET=24 MODIFIER_ADDRESS_SIZES={'S1':2,'S2':3,'S3':4} def __init__(self, slotAddress, slotSize, headerAddress): self.slotAddress=slotAddress self.slotSize=slotSize self.headerAddress=headerAddress self.raw_data=[0xFF for x in range(slotSize)] self.SRecords=[] self.headerRecordIndex=None self.crcLoc=headerAddress+self.CRC_HEADER_OFFSET self.g16 = 0x11021 self.crc_init = 0xFFFF #CRC used for the entire file - Image CRC self.file_crc = crcmod.Crc(self.g16, self.crc_init, False) def ProcessRecord(self, SRecord): self.SRecords.append(SRecord) SRecord=SRecord.strip() name=SRecord[0:2] if name in self.MODIFIER_ADDRESS_SIZES: addressSize=self.MODIFIER_ADDRESS_SIZES[name] count=int(SRecord[2:4],16) address=int(SRecord[4:4+addressSize*2],16) data=SRecord[4+addressSize*2:-2] checkSum=int(SRecord[-2:],16) # print('Srecord Count:', count) # print('SRecord Address:', address) self.ApplyData(address, data) if self.crcLoc>=address and self.crcLoc<address+len(data)/2: self.headerRecordIndex=len(self.SRecords)-1#often 0 so don't use if headerRecordIndex def ApplyData(self, address, datastring): if(datastring): val=int(datastring[:2],16) try: self.raw_data[address-self.slotAddress]=val except: print('Indexing Error, Slot:',address-self.slotAddress) sys.exit() self.ApplyData(address+1,datastring[2:]) def GetPatchedRecords(self): index=0 result=[] for record in self.SRecords: if index==self.headerRecordIndex: result.append(self.AssignCRC(record)) else: result.append(record) index+=1 return result def AssignCRC(self,record): record=record.strip() if record: name=record[0:2] if name in self.MODIFIER_ADDRESS_SIZES: addressSize=self.MODIFIER_ADDRESS_SIZES[name] count=int(record[2:4],16) address=int(record[4:4+addressSize*2],16) data=record[4+addressSize*2:-2] checkSum=int(record[-2:],16) crcValue=self.ReverseByteOrder(self.CalculateCRC()) crcIndex=4+addressSize*2+(self.crcLoc-address)*2 result=record[:crcIndex]+crcValue+record[crcIndex+8:] result=result[:-2]+self.GetLineChecksum(record[2:-2]) return result+'\n' def ReverseByteOrder(self, hexstring): if len(hexstring)==2 or len(hexstring)==0: return hexstring return self.ReverseByteOrder(hexstring[2:])+hexstring[:2] def GetLineChecksum(self, strval): sum=0 for index in range(len(strval)/2): value=int(strval[index*2]+strval[index*2+1],16) sum+=value #least significant byte, one's complement sum=(sum%0x100)^0xFF return '{0:2X}'.format(sum) def CalculateCRC(self): crcLoc=self.crcLoc-self.slotAddress #NOT self.crcLoc, we just want the location in the datafile for this one operation self.file_crc.update(''.join([chr(x) for x in self.raw_data[:crcLoc]])+''.join([chr(x) for x in self.raw_data[crcLoc+4:]])) result= self.file_crc.hexdigest().zfill(8) return result if __name__ == '__main__': from optparse import OptionParser #python r_fl_mot_converter.py -i test_sf_firmware_image_s7g2.srec -o test_sf_firmware_image_s7g2.bch -m 1024 -f 256 -e 0x00010000 -l 0x00010800 -s 0x0001F8000 #python r_fl_mot_converter.py -i test_sf_firmware_image_s7g2_v84_ii68.srec -o test_sf_firmware_image_s7g2_v84_ii68.bch -m 1024 -f 256 -e 0x00010000 -l 0x00010800 -s 0x0001F8000 #python r_fl_mot_converter.py -i test_sf_firmware_image_s3a7.srec -o test_sf_firmware_image_s3a7.bch -m 1024 -f 256 -e 0x00010000 -l 0x00010800 -s 0x000078000 #python r_fl_mot_converter.py -i test_sf_firmware_image_s3a7_v84_ii68.srec -o test_sf_firmware_image_s3a7_v84_ii68.bch -m 1024 -f 256 -e 0x00010000 -l 0x00010800 -s 0x000078000 #python r_fl_mot_converter.py -i test_sf_firmware_image_s7g2_slot1.srec -o test_sf_firmware_image_s7g2_slot1.bch -m 1024 -f 256 -e 0x208000 -l 0x208800 -s 0x0001F8000 #python r_fl_mot_converter.py -i test_sf_firmware_image_s7g2_v84_ii68_slot1.srec -o test_sf_firmware_image_s7g2_v84_ii68_slot1.bch -m 1024 -f 256 -e 0x208000 -l 0x208800 -s 0x0001F8000 #python r_fl_mot_converter.py -i test_sf_firmware_image_s3a7_slot1.srec -o test_sf_firmware_image_s3a7_slot1.bch -m 1024 -f 256 -e 0x88000 -l 0x88800 -s 0x000078000 #python r_fl_mot_converter.py -i test_sf_firmware_image_s3a7_v84_ii68_slot1.srec -o test_sf_firmware_image_s3a7_v84_ii68_slot1.bch -m 1024 -f 256 -e 0x88000 -l 0x88800 -s 0x000078000 parser = OptionParser( description = "FlashLoader S-Record Converter" ) parser.add_option("-i", "--input", dest="mot_filename", action="store", help="The path to the file you want to convert.", default = "", metavar="FILE" ) parser.add_option("-o", "--output", dest="out_filename", action="store", help="Name of the output file.", default = "", metavar="OUTPUT" ) parser.add_option("-m", "--maximum_block_size", dest="maximum_block_size", action="store", type='int', help="Set max size in bytes for Block [default=1024]", default = 1024, metavar="MAXBLOCKSIZE" ) parser.add_option("-f", "--fill_space", dest="max_fill_space", action="store", type='int', help="Max bytes between 2 records to fill with 0xFF's and join data [default=256]", default = 256, metavar="FILLSPACE" ) parser.add_option("-e", "--executable_address", dest="executable_address", action="store", type='int', help="Flash location for application", default=0x00008000, metavar="EXECUTABLE_ADDRESS" ) parser.add_option("-l", "--location", dest="header_location", action="store", type='int', help="Flash location for application load file header [default=0x00008400]", default=0x00008800, metavar="HEADERLOC" ) parser.add_option("--formatting", dest="want_formatting", action="store_true", help="Displays information on how the binary file is structured.", default=False ) parser.add_option("-v", "--valid_mask", dest="input_valid_mask", action="store", type='int', help="Set the value you used for the valid mask [default=0xAF]", default=0xAF, metavar="VALIDMASK" ) parser.add_option("-s", "--slot_size", dest="slot_size", action="store", type='int', help="Set the desired flash size to calculate the checksum over. The default is to use the compiler defined value. [default=0]", default=0, metavar="VALIDFLASHSIZE" ) if len(sys.argv) == 1: parser.print_help() sys.exit() else: (options, args) = parser.parse_args() if options.want_formatting == True: #Give information on file structure print 'The format of the output binary file is: 1 Load File Header followed by n Blocks.' print 'n is the number of Blocks needed to represent S-Record file.' print '' print 'Structure of a Load File Header:' print '| Valid Mask | ' + str(FL_MOT_Converter.FL_LI_FORMAT['valid_mask']) + ' Byte(s) | Always 0x' + str(options.input_valid_mask) + ', marks valid Load File Header' print '| Version # | ' + str(FL_MOT_Converter.FL_LI_FORMAT['version_number']) + ' Byte(s) | Identifies version of application' print '| Image ID | ' + str(FL_MOT_Converter.FL_LI_FORMAT['image_identifier']) + ' Byte(s) | Identifies application' print '| Size of BCH file | ' + str(FL_MOT_Converter.FL_LI_FORMAT['size_bch']) + ' Byte(s) | Size of image as in external memory' print '| Size of FW Image | ' + str(FL_MOT_Converter.FL_LI_FORMAT['size_raw']) + ' Byte(s) | Size of image as stored in flash (executable image)' print '| Max Block Size | ' + str(FL_MOT_Converter.FL_LI_FORMAT['maximum_block_size']) + ' Byte(s) | Max size of block' print '| BCH file CRC | ' + str(FL_MOT_Converter.FL_LI_FORMAT['checksum_bch_file']) + ' Byte(s) | CRC of data as in ext memory, CCITT' print '| Raw CRC (for entire slot) | ' + str(FL_MOT_Converter.FL_LI_FORMAT['checksum_fw_image']) + ' Byte(s) | CRC of image as in MCU flash, CCITT' print '| Image start address | ' + str(FL_MOT_Converter.FL_LI_FORMAT['application_start_address']) + ' Byte(s) | Starting address of the application image' print '| # of memory instances | ' + str(FL_MOT_Converter.FL_LI_FORMAT['num_memory_instances']) + ' Byte(s) | # of memory instances this image spans' print '| Pointer to instances | ' + str(FL_MOT_Converter.FL_LI_FORMAT['p_app_memory_instance']) + ' Byte(s) | Pointer to memory instances (used by sf_firmware_image)' print '| 1st Block Header Addr | ' + str(FL_MOT_Converter.FL_LI_FORMAT['first_block_address']) + ' Byte(s) | Location of first block header in ext memory' print '| Successfully Stored | ' + str(FL_MOT_Converter.FL_LI_FORMAT['successfully_stored']) + ' Byte(s) | Identifies successfully downloaded image (written by MCU)' print '| Checksum of this header| ' + str(FL_MOT_Converter.FL_LI_FORMAT['checksum_bch_file_header']) + ' Byte(s) | CRC of this header (excludes successfully_stored), CCITT' print '' print 'Structure of a Block Header:' print '| Valid Mask | ' + str(FL_MOT_Converter.FL_BH_FORMAT['valid_mask']) + ' Byte(s) | Always 0x' + FL_MOT_Converter.FL_BH_VALID_MASK + ', marks new block header' print '| Sequence ID | ' + str(FL_MOT_Converter.FL_BH_FORMAT['block_identifier']) + ' Byte(s) | Identifier for this block' print '| Flash Address | ' + str(FL_MOT_Converter.FL_BH_FORMAT['flash_address']) + ' Byte(s) | The starting address for the data' print '| Size of Data | ' + str(FL_MOT_Converter.FL_BH_FORMAT['data_size']) + ' Byte(s) | Number of bytes of Data' print '| CRC-16 | ' + str(FL_MOT_Converter.FL_BH_FORMAT['data_checksum']) + ' Byte(s) | CRC of Data, CCITT - x^16 + x^12 + x^5 + 1' print '| Next Header Address | ' + str(FL_MOT_Converter.FL_BH_FORMAT['next_block_address']) + ' Byte(s) | Address of next block header in external memory' print '| Checksum of this header| ' + str(FL_MOT_Converter.FL_LI_FORMAT['checksum_bch_file_header']) + ' Byte(s) | CRC of this BCH block header, CCITT' print '| Data | 0-4 GBytes | Data' print '' print 'NOTE: All binary data is stored LSB' print '' if len(options.mot_filename) == 0: #No input file print 'Error - No input file!' parser.print_help() sys.exit() if len(options.out_filename) == 0: #No output file was given, use modified input filename #This fuction will give path without extension in 'start' (and extension) in 'ext' start, ext = os.path.splitext(options.mot_filename) #Add some other extension options.out_filename = start + ".bch" if options.slot_size == 0: #User must specify the slot size print 'Invalid slot size' parser.print_help() sys.exit() fl_m = FL_MOT_Converter(options.mot_filename, options.out_filename, options.maximum_block_size, options.max_fill_space, options.header_location, options.input_valid_mask, options.slot_size, options.executable_address) fl_m.Process()
Hi Ian, thank you for your reply. Actually we are using S3A1 und S7G2 MCUs with our custom boards and for both we have to implement Boot-/Flashloader capability, SSP Version is 1.6.0. Do we have to upgrade to 1.7.0? Installing the pack files doesn't throw any error, also compiling a dummy bootloader application adding g_sf_bootloader_mcu compiles without error. So at the first glance it seems that this pack works with SSP V 1.6.0 as well. Best regards Ralph
downloader_usb_cdc_blocking_s3a1.zipbootloader_usb_cdc_blocking_s3a1.zipbootloader_usb_cdc_blocking_s7g2.zipdownloader_usb_cdc_blocking_s7g2.zip
Hi Ralph,
Attached are flashloader bootloader and downloader projects for the SK-S7G2 and TB-S3A1. Both are blocking using USB-CDC and the transfer interface.
Hopefully they will be useful.
Hi Ian,
thank you so much for your work and your support. Actually I can successfully program the bootloader and downloader to our custom board. With breakpoints I've verified that the bootloader is called first before jumping to the downloader application with flashing leds.
But now I'm stucking in converting "downloader_usb_cdc_blocking_s3a1_crc.srec" (or should I use the one without crc) file to BCH, the GUI always shows the error message "Error! Please fill in all the information before attempting to convert the script.".
I've attached the screenshot, but I think I've provided all necessary information.
Thanks and best regards
The CRC version of the SREC file is created by an e2studio custom build phase. This can be found in the Builders section of the project's peroperties.
This is only needed when using the debugger and the first build and not when using a free running version of the donloader and/or subsequent builds.
Apologies for not included the newer Python file. Please find it attached. This was modified by another form user, Erik, and fixes an issue where a 4k section of flash can be mistaken for RAM and excluded from the output.
r_fl_mot_converter_modified.zip